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AIIItract-50lutions are given for an interface crack having no-slip zones near the crack tips and whose
surfaces are loaded in pure shear and combined tension-shear. The interface crack is found to open at two
places with part of the smooth region in contact, provided that the tension/shear ratio is small enouah. The
crack tip stress-intensity factors are related by the Dundun' constant. Numericar calculations were
performed with material constants which pertain to an example of the cancellous bone/PMMA interfaces.

INTRODUCTION
One of the main concerns in designing composite structures is the possibility of interfacial
failure between the comprising materials. Because of the increasing use of these structures in
various fields of engineering, interface fracture mechanics has become an important research
subject. The stresses around a crack lying between two dissimilar elastic media was first studied
by Williams in 1959[1] and later by England[2] and Erdogan[3]. These conventional treatments
have yielded results which are physically unrealistic, namely material overlapping at the crack
tip. Recently, Comninou showed that such unphysical material overlapping can be removed by
assuming that the two crack surfaces are in smooth contact at the crack tip regions [4].
However, we note in many actual engineering applications, interfaces are very rough and even
interdigitated. The presence of such interdigitations can prevent relative slip at the interface or
a portion thereof and thus enable shear loads to be sustained there even when the interface has
failed in tension. Investigations of such a no-slip interface crack, both in the interior and on the
edge, have been solved under pure tension [5,6]. This paper is a continuation of that series of
studies. It presents a solution for such an internal, interfacial crack under action of pure shear
and also for combined loading which is still predominantly shear.

The solution is motivated by problems in internal artificial human joints, in which the
artificial material forming the articulating surface is connected to the bone by room temperature
hardening polymer, polymethylmethacrylate (PMMA). A significant problem with the artificial
joints is that they can become loose from the bone. Although the exact mechanism of loosening
is as yet unknown, the process probably involves mechanical crack propagation along the
cancellous bone-PMMA interface [7]. A hypothesized loosening process is, first, propagation of
initial interface flaws to complete interface failure, next growth of fibrous material at the
interface due to relative motion, and finally degradation of the lining material to cause joint pain
and symptoms of clinical loosening. The first step in establishing the validity of this hypothesis
is, therefore, the study of the crack propagation phenomena and the mechanics of interface
cracks. Cancellous bone is spongelike in appearance with pore sizes of the order of I mm.
Because of this structure, the bone-PMMA interface is very irregular, with typical pertur
bations of greater than I mm. From the finite element studies of these total joint systems, a
certain part of this interface is subject to rather high shear [8, 9]. Examples are the stem regions
in the hip and the pole regions in the knee. This paper is concerned about how a crack
propagates along the interface in those regions where the interfacial stress field is dominated by
shear. Consequently, with this specific application in mind, the material constants used in the
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numerical calculation for this solution are taken to be those of cancellous bone and PMMA.
However, such a no-slip interface crack may also be physically realistic in other applications
where crack surfaces are very rough.

I. PURE SHEAR

Let the interface crack be represented by a line segment (- a, b) on the x-axis, consisting of
a smooth region (-1,1) and two interlocked regions (- a, -1) and 0, b), as shown in Fig. 1. The
two interlocked regions are assumed to have failed in the tensile direction; but due to the
interfacial interlocks, can still sustain shear loads. We will show in this section that for such an
interface crack, opening can occur under pure shear loading. Similar phenomenon also occurs
in Comninou's interface crack having smooth contact zones near the tips[10).

If one assumed first that an interface crack with no-slip tips did not open at all under shear
loading, then one would find tensile contact stresses over half of the smooth region. In an
attempt to eliminate this problem, the crack was allowed to be opened in the region (- a, 'Y) but
closed in ('Y, b), where 'Y is an unknown parameter to be determined in the solution process by
requiring that the crack is smoothly closed at x ='Y. The problem of tensile contact stresses in
the smooth region was eliminated in this case; however, the stress in the interlocked region
(I, b) was then found to become tensile, which did not agree with our initial assumption. To
relieve this problem, the region (I, b) was allowed also to open (Fig. 2). The solution obtained
met all the physically required inequality conditions. This solution is presented in the following.

Problem formulation
The boundary conditions are as follows:

Uyy =0, aux =0, auy~O, -a<x<-I,
1<x< h, (Ia)

Uyy ::: 0, uxy ::: 0, auy ~O, -l<x<'Y, (lb)

Uxy ::: 0, auy =0, U yy :5 0, 'Y<x<I, (lc)
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I <x< b.

where we define,

A no-slip interface crack in a shear field

a =fLl(K2 +1) - JL2(KI +1)
JLI(K2 + I) + JL2(K, + I)

f3 =fLl(K2 -I) - fL2(KI -1)
JL.(K2 + I) + JL2(KI + 1)

_ 2JL2(1 +a)
C - (K2 + 1)(1 - (32)

Bx(x) = ~ [ux'(x, 0) - u/(x, 0») -I < x < I,

a
BJCx) =ax [u,t(x, 0) - u/(x, 0)] - a < x < 'Y,

a
B2(x) = ax [u,t(x, 0) - u/(x, 0»)
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(2a)

(2b)

(2c)

(3a)

(3b)

(3c)

Here, K =3- 4v for conditions of plane strain, K = (3 - 11)/(1 + II) for plane stress, and a, f3 are
the Dundurs' constants (see [II)).

FoUowing the formulation procedures as in the earlier paper[5J, the interfacial conditions (l)
lead to

T- C{f3Bt(X)H('Y - x)-; f. ~~~ d€} = 0, -I < x< I, (4)

f3BAX)H(X+l)+!f
Y

BM)d€+! {" B2(p)dp=0, -a<x<y, (5)
." -. €- X ." JI P - x

!fY BM)d€+! (" B2(p)dp 0, I<x<b. (6)
." _. ~-x .,,11 p-x

To insure single-valued displacements, the following additional conditions are also imposed.

From eqns (4) and (7a)

f, BA€) d€ = 0,

L: B1(t)d€=0,

rB2Wd€=0.

(7a)

(7b)

(7c)

Substituting (8) into (5),

(8)

1- fY BM) d~ ! f" B2(p) dp tf. H(x + l) fY BM)(I - ~2)1/2 d~
J: + (I 2)112 J:1T _/I !t-x ." I p-x 1T -x -I !t-x

_ PTX
- C(l - x2)1I2 H(x + I), - a < x < y. (9)

Replacing x in (6) with z and defining the following coordinate transformations,

s=(x-f2)/fh [=(€-f2)/fl

W = (z- A2)/A" <p = (p- A2)/A,
(10)
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where

eqn (6) becomes
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2fl = 'Y + a, 2f2 = 'Y - a

2AI=b-I.2A2 =b+l,
(II)

(12)

and eqn (9) becomes

(l-t)II .o1(Dd(+AII
I .o2(t/J)dt/J

'IT -I (-s 'IT -1(A It/J+A2-fls-f2)

~ II .oM) d( {[I - (fl( + f 2);]112H(f
1
s+ f 2+ I)

'IT _I «- s) I - (fIS + f 2)

x H(fI(+f2 + I)-I }dt/J

fjT (fls+fv
= C· [1- (fls + f

2
)2)112 H(fls + f 2 + O. - 1< S < 1. (13)

The remaining conditions are:

fl.o.«)d(=O.

f, .o2(t/J) dt/J = O.

(l4a)

(l4b)

Solution
Assuming BM) and B2«) have integrable singularities at both of their end points, we write

.oM) = bt«)/(I- (2)112.

.o2(t/J) = b2(t/J)/(I- t/J2)1/2.

(l5a)

(l5b)

writing eqns (l2HI4) in discrete form. with the Gauss-Chebshev integration formula[l2J. we
have:

where

~ ~ {D~i~~:~ - fj2K«i, Sk)]bMa+ (A1t/Ji /~:~t:~k- f 2)}

-I!:!. . (fiSk +f 2) H(f f
- C [1- (fiSk + f

2
)2)112 ISk + 2 + I).

:t b.«i) =0.
;=1 n

:t b2(tp;) =0.
i=1 n

(16)

(17)

(l8a)

(l8b)

(l9a)

(l9b)

Sk = Wk =cos (:k). k=I ..... n-1. (l9c)
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We further require that the contact pressure at x = "Y must vamsh[l3J. which leads to
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(20)

where A* = ("Y- A2)/A I•

During the process of solution. "a" and "b" were first given. Equations (16)-(19) were
subsequently solved for a series of assumed values of "Y. The correct solution was then taken as
the one that also satisfied eqn (20). The normal traction at the contact zone as well as the
relative displacements at the separation zones were calculated to ensure that the inequality
conditions were met.

Results
It was found that eqns (16)-(20) can be satisfied by more than one "Y, However. of these

solutions, only one of them met all the inequality conditions as required physically, Once the
solution was found for a given set of "a" and "b", the stress intensity factors can be obtained
as follows.

K - . {(- -1)112£JI bJ<{)d' }- -C b _
I - Lim s (1'_ )(1- 1'2)112 -. /2 I( 1)x--a" ....-1.. 11' -I!> S!> V

K . {( 1)l/2( C) bl(S)} - C b )"_ =LUI!. S + - fJ (1 _ 2)tn =. /2 fJ 1(- 1
x=-a ....-1 S v

K - L' {(- -1}112[CI
I

bx({)d{ ]} - - C b (-1)
x=!{" - x...~~+ x 11' -I ({ - x)(l- (2)1l2 - y2 x

K L· {(I )l/2[C b.(x)]} L' {( 1 )1/2 CJI b2(+)d~ }._{- = x~?-! - x 'f3 (1- X2)1I2 + w':!!:+ - - W -; _I (~- w)(l- ~2)i12

fP.. C=y2 bx(1) - y2 b2( - I)

K L· {( 1)112 CI I
bx({)diz>} L' {(I )112r C) b2(W)}n= 1m x- - (1:_ )(1-1/2 + Im_ +w \- fJ(l_ 2)112

x-I x-I+ 11' -I!> X w...-I W

where

(21a)

(2Ib)

(2Ic)

(2Id)

(2Ie)

(210

(2Ig)

bx(± 1) can be calculated from eqn (8). b l (± 1) and b2(± l) can be obtained in terms of bl({i) and
b2(4Jj) respectively using Krenk's formula[14].

Three different sets of "a" and "b" were tried. Their corresponding "Y's and stress intensity
factors were shown in Table I.

It is apparent from (2Ia,b,f,g) that

(221)

(22b)
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Table I. The extent of contact zone and the variollS K's under unit shear for three different sets of "a" and
"b". (,8=0.101. C= 0.421 x lotPa.)

... 3.0 ... 1.5 ... 1.5

b .. 1.5 b .. 1.5 b .. 3.0

y 0.564 0.486 0.492

~+ -0.578 x 10-2 -0.203 x 10-1 -0.203 x 10-1

x • -a

~I -0.621 x 10-3 -0.219 x 10-2 -0.218 x 10-2

.x • -a

KII+ -0.711 -0.701 -0.702
x • -1

~- -0.868 x 10-1 -0.829 x 10-1 -0.812 x 10-1
x .. 1

~I 0.706 0.706 0.707
x • 1+

~ -2 0.502 x 10-2 0.213 x 10-2

x· b+
0.190 x 10

KxI 0.850 x 10-3 0.540 x 10-3 0.228 x 10-3

x .. b-

Moreover, except for the Mode I stress intensity factor at x = b, the value of which is also
relatively smaller than that under tensile loading, all the Mode I stress intensity factors are
negative.

2. COMBINED LOADING

Due to the nature of non-linearity of this problem, the case for combined loading could not
be solved by superposition of the two previous solutions for separated tensile and shear
loadings. Moreover, if a compressive load is to be added to the shear field, both the right and
left interlocked regions could be partially closed near the tips. To find solutions for those cases,
we have to deal with the problems of additional unknown parameters that specify the sizes of
the various additional contact zones. This would mean, in the context of the present numerical
scheme, a considerably increased computing effort. Since we expect that the mode I stress
intensity factors will be less than those for the case of pure shear loading, it is reasonable not to
develop solutions for compression-shear cases, particularly if one is interested only in the worst
case.

For the case of combined tensile and shear loading, we would expect, for a value of "a" and
"b", y will move to the right for increasing tension to shear ratio; finally, as y becomes high
enough, the whole crack would be opened.

In this section, we are dealing with cases for combined tensile-shear loading, where the
tension/shear ratio is small enough so that the crack is still partially closed between x = y to I.

The governing equations for such a case can be obtained from eqns (4) to (6) with slight
modifications.

T-C{PB1(X)H(y-x)-*fl B~(~:~}=o, -l<x<l, (23a)

0' + C{f3B.(X)H(X + 1) +1. JY BM) d~ +1. fb B2(p) dp} =O. a < x < y. (23b)
'IT -a ~ - X 'IT I P - X

0' +f {JY BM) d{ + fb B2(p) dp } = 0, 1< X< b. (23c)
'IT -0 g X I p-x

where 0' is the applied tension at infinity,
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Table 2. The size of contact zone and the stress intensity factors for combined tensile-shear loading.
(Il =0.107. C =0.427 x 10' Pa, T =I Pa.)

a • 1.5 a/~

b • 1.5 0.02 0.05

y 0.698 0.875

lx -1 -0.605 x 10-1• -0.544 x 10
x • -.

lxI -0.585 x 10-2 -0.650 x 10-2

x· -.

lxI - -0.712 -0.705
x • -1

lx - -0.104 -0.137
" • 1

lxI+ 0.704 0.701
" • 1

!C.z. 0.235 x 10-1 0.509 " 10-
1

" • b

Kn 0.252 " 10-
2 -2

0.547 " 10

" • b-
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Following the same procedures for solution as in the two previous sections. we found that,
for a = b = 1.5, a oft ratio of as low as 0.05 can move y from 0.486 in the pure shear case to
0.875. Thus a small ofT is sufficient to open up the whole crack region. Two values of ofT ratio
were tried, namely 0.02 and 0.05. Their corresponding y's and stress intensity factors are given
in Table 2.

Discussion and summary
For an interfacial crack which is completely interlocked in the tangential direction, it can be

easily shown that pure shear loading would not cause any crack opening. Crack opening can
only be induced under shear if there exists within the crack zone certain smooth regions where
relative slip between the dissimilar surfaces are permitted. In those situations, it was shown that
the mode I and mode II stress intensity factors are related through the Dundurs' constant {3. For
positive {3 and T, the only positive mode I intensity factor is at the right crack tip x = b'. For
{3 = 1.07. which pertains to an example of the cancellous bone/PMMA interfaces, its value is
roughly 2 orders of magnitude lower than the highest mode II stress intensity factor induced. It
was also noted that the highest mode II stress intensity factor occurs at the transition between
the smooth and the interlocked zones and both sides of the crack. Hence, under pure shear
loading, additional failure of the mode II type might occur in the regions which had already
failed in the tensile direction. This fracture mode will inevitably involve cohesive fracture of
either cancellous bone or the PMMA plugs along the mechanical interlocks on the interface.
causing extension of the smooth zone and allowing larger relative motions between the two
crack surfaces.

From the governing equations, it can be easily seen that under pure shear loading, the
dimension of the contact zone y depends only on the Dundurs' constant {3 and not on the
applied shear T and the other bielastic constant C. Under combined tension-shear loading, the
contact region would become smaller compared with that for the pure shear case. Interestingly.
the additional tensile load does not shift all mode I stress intensity factors towards the positive
direction. Instead, while the K[ at x = b+ becomes more positive with additional tensile load
applied, K[ at x =- a+ and K[ at x =1- becomes more negative.

This paper only presents numerical analysis for one particular example of the cancellous
bone/PMMA interface. Investigations with other bielastic constants will be necessary if
applications are to be made for interfaces in other composite systems.
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